Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 926: 171943, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527546

RESUMO

Monoculture plantations in China, characterized by the continuous cultivation of a single species, pose challenges to timber accumulation and understory biodiversity, raising concerns about sustainability. This study investigated the impact of continuous monoculture plantings of Chinese fir (Cunninghamia lanceolata [Lamb.] Hook.) on soil properties, dissolved organic matter (DOM), and microorganisms over multiple generations. Soil samples from first to fourth-generation plantations were analyzed for basic chemical properties, DOM composition using Fourier transform ion cyclotron resonance mass spectrometry, and microorganisms via high-throughput sequencing. Results revealed a significant decline in nitrate nitrogen content with successive rotations, accompanied by an increase in easily degradable compounds like carbohydrates, aliphatic/proteins, tannins, Carbon, Hydrogen, Oxygen and Nitrogen- (CHON) and Carbon, Hydrogen, Oxygen and Sulfur- (CHOS) containing compounds. However, the recalcitrant compounds, such as lignin and carboxyl-rich alicyclic molecules (CRAMs), condensed aromatics and Carbon, Hydrogen and Oxygen- (CHO) containing compounds decreased. Microorganism diversity, abundance, and structure decreased with successive plantations, affecting the ecological niche breadth of fungal communities. Bacterial communities were strongly influenced by DOM composition, particularly lignin/CRAMs and tannins. Continuous monoculture led to reduced soil nitrate, lignin/CRAMs, and compromised soil quality, altering chemical properties and DOM composition, influencing microbial community assembly. This shift increased easily degraded DOM, accelerating soil carbon and nitrogen cycling, ultimately reducing soil carbon sequestration. From environmental point of view, the study emphasizes the importance of sustainable soil management practices in continuous monoculture systems. Particularly the findings offer valuable insights for addressing challenges associated with monoculture plantations and promoting long-term ecological sustainability.


Assuntos
Cunninghamia , Microbiota , Matéria Orgânica Dissolvida , Nitratos/análise , Lignina/metabolismo , Taninos/análise , Taninos/metabolismo , Solo/química , Compostos Orgânicos/análise , Compostos de Enxofre/metabolismo , Nitrogênio/análise , Carbono/análise , Hidrogênio/análise , Oxigênio/análise
2.
J Environ Manage ; 345: 118793, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619380

RESUMO

To identify possible dominating processes involved in soil microbial community assembly, dissolved organic matter (DOM) and multi-nutrient cycling (MNC) interactions and contribute to understanding of climate change effects on these important cycles, we investigated the interaction of soil chemistry, DOM components and microbial communities in five vegetation zones - ranging from evergreen broad-leaved forest to alpine meadow - along an elevation gradient of 290-1960 m in the Wuyi Mountains, Fujian Province, China. Soil DOM composition and microbial community assembly were characterized using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and Illumina MiSeq high-throughput sequencing, respectively. Sloan's neutral model and the modified stochasticity ratio were used to infer community assembly processes. Key microbial drivers of the soil MNC index were identified from partial least squares path models. Our results showed that soil DOM composition is closely related to the vegetation types along an elevation gradient, the structure and composition of the microbial community, and soil nutrient status. Overall, values of the double bond equivalent (DBE), modified aromaticity index (AImod) increased, and H/C ratio and molecular lability boundary (MLBL) percentage decreased with elevation. Lignins/CRAM-like structures compounds dominated soil DOM in each vegetation type and its relative abundance decreased with elevation. Aliphatic/protein and lipids components also decreased, but the relative abundance of aromatic structures and tannin increased with elevation. The alpha diversity index of soil bacteria gradually decreased with elevation, with deterministic processes dominating the microbial community assembly in the highest elevation zone. Bacterial communities were conducive to the decomposition of labile degradable DOM compounds (H/C ≥ 1.5) at low elevation. In the cooler and wetter conditions at higher-elevation sites the relative abundance of potentially resistant soil DOM components (H/C < 1.5) gradually increased. Microbial community diversity and composition were important predictors of potential soil nutrient cycling. Although higher elevation sites have higher nutrient cycling potential, soil DOM was assessed to be a more stable carbon store, with apparent lower lability and bioavailability than at lower elevation sites. Overall, this study increases understanding of the potential linkage between soil microbial community, multiple nutrient cycling and DOM fate in subtropical mountain ecosystems that can help predict the effect of climate change on soil carbon sequestration and thus inform ecosystem management.


Assuntos
Microbiota , Solo , Solo/química , Matéria Orgânica Dissolvida , Florestas , China
4.
Sci Total Environ ; 818: 151823, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34808163

RESUMO

Characterization of soil dissolved organic matter (DOM) and understanding of the interactions between soil microbial communities and DOM molecules along elevation gradients in alpine ecosystems are still limited. To unravel these interactions and how they change along alpine elevation gradients, we sampled topsoil in the Sygera Mountains (Tibet, China) at elevations between 3800 and 4600 m. The molecular characteristics of soil DOM were determined using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and soil microbial composition was identified by high-throughput sequencing. Among the seven components of DOM, the lignins/CRAM (carboxyl-rich alicyclic molecules)-like structure dominated at all elevations, followed by tannins, while the relative abundance of unstable substances, including lipids, aliphatic/protein, and carbohydrates, was lower. As elevation increased, the molecular diversity, degree of oxidation, aromaticity, and unsaturation of soil DOM decreased. The abundance and diversity of soil bacteria and fungi also generally decreased with elevation. Both bacteria and fungi play an important role in the degradation of DOM molecules, but bacteria appear to have greater degradation ability. Among them, Proteobacteria and Bacteroidetes mainly promote the degradation of lignins/CRAM-like structure molecules, while Basidiomycota mainly degrade more unstable substrates. Co-occurrence network analysis revealed complex correlations between specific microbial groups and DOM molecules. Our results suggest that more active cycling of soil DOM could occur in alpine ecosystems due to climate warming, as the result of increased vegetation productivity and litter input in response to rising temperature promoting the relative abundance of microbial groups capable of degrading lignins/CRAM-like structures in soil DOM.


Assuntos
Microbiota , Solo , Bactérias/genética , Bactérias/metabolismo , Matéria Orgânica Dissolvida , Solo/química , Microbiologia do Solo
5.
Front Microbiol ; 12: 729344, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745032

RESUMO

The total dissolved organic matter (DOM) content of soil changes after vegetation transformation, but the diversity of the underlying chemical composition has not been explored in detail. Characterizing the molecular diversity of DOM and its fate enables a better understanding of the soil quality of monoculture forest plantations. This study characterized the chemodiversity of soil DOM, assessed the variation of the soil microbial community composition, and identified specific linkages between DOM molecules and microbial community composition in soil samples from a 100-year chronosequence of Chinese fir monoculture plantations. With increasing plantation age, soil total carbon and dissolved organic carbon first decreased and then increased, while soil nutrients, such as available potassium and phosphorus and total nitrogen, potassium, and phosphorus, increased significantly. Lignin/carboxylic-rich alicyclic molecule (CRAM)-like structures accounted for the largest proportion of DOM, while aliphatic/proteins and carbohydrates showed a decreasing trend along the chronosequence. DOM high in H/C (such as lipids and aliphatic/proteins) degraded preferentially, while low-H/C DOM (such as lignin/CRAM-like structures and tannins) showed recalcitrance during stand development. Soil bacterial richness and diversity increased significantly as stand age increased, while soil fungal diversity tended to increase during early stand development and then decrease. The soil microbial community had a complex connectivity and strong interaction with DOM during stand development. Most bacterial phyla, such as Acidobacteria, Chloroflexi, and Firmicutes, were very significantly and positively correlated with DOM molecules. However, Verrucomicrobia and almost all fungi, such as Basidiomycota and Ascomycota, were significantly negatively correlated with DOM molecules. Overall, the community of soil microorganisms interacted closely with the compositional variability of DOM in the monoculture plantations investigated, both by producing and consuming DOM. This suggests that DOM is not intrinsically recalcitrant but instead persists in soils as a result of simultaneous consumption, transformation, and formation by soil microorganisms with extended stand ages of Chinese fir plantations.

6.
Ecotoxicol Environ Saf ; 219: 112359, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34044312

RESUMO

Cadmium (Cd) is one of the most toxic environmental pollutants affecting the growth and reproduction of various plants. Analysis of the biological adaptation and tolerance mechanisms of the hyperaccumulator Erigeron annuus to Cd stress may help identify new plant species for phytoremediation and in optimizing the process. This study is to the first to analyze the molecular composition and diversity of dissolved organic matter (DOM) secreted by roots using FT-ICR MS, and multiple physiological and biochemical indexes of E. annuus seedlings grown in solutions containing 0-200 Cd µmol L-1. The results showed that E. annuus had strong photosynthetic adaptation and protection ability under Cd stress. Cd was immobilized or compartmentalized by cell walls and vacuoles in the plant, thus alleviating Cd stress. Activation of anti-oxidation defense mechanisms also played an important role in alleviating or eliminating Cd toxicity in E. annuus. High Cd stress promoted production of a higher proportion of new molecules in DOM secreted by E. annuus roots compared to low Cd stress. DOM secreted by roots contributed to plant resistance to Cd-induced stress via producing more carbohydrates, aromatic structures and tannins. Results indicate the mechanisms underpinning the potential use of E. annuus as a phytoremediator in environments with moderate Cd pollution.


Assuntos
Biodegradação Ambiental , Cádmio/toxicidade , Erigeron/fisiologia , Poluentes do Solo/toxicidade , Tolerância a Medicamentos , Exsudatos e Transudatos , Oxirredução , Raízes de Plantas/crescimento & desenvolvimento , Plantas , Plântula
7.
BMC Plant Biol ; 20(1): 545, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287710

RESUMO

BACKGROUND: Under natural conditions, soil nutrients are heterogeneously distributed, and plants have developed adaptation strategies to efficiently forage patchily distributed nutrient. Most previous studies examined either patch strength or patch size separately and focused mainly on root morphological plasticity (increased root proliferation in nutrient-rich patch), thus the effects of both patch strength and size on morphological and physiological plasticity are not well understood. In this study, we examined the foraging strategy of Neyraudia reynaudiana (Kunth) Keng ex Hithc, a pioneer grass colonizing degraded sites, with respect to patch strength and size in heterogeneously distributed phosphorus (P), and how foraging patchily distributed P affects total plant biomass production. Plants were grown in sand-culture pots divided into ½, », 1/6 compartments and full size and supplied with 0 + 0/30, 0 + 7.5/30 and 7.5 + 0/30 mg P/kg dry soil as KH2PO4 or 0 + 15/15, 0 + 18.5/ 18.5, 7.5 + 15/15 mg kg - 1 in the homogenous treatment. The first amount was the P concentration in the central region, and that the second amount was the P concentration in the outer parts of the pot. RESULTS: After 3 months of growth under experimental conditions, significantly (p < 0.05) high root elongation, root surface area, root volume and average root diameter was observed in large patches with high patch strength. Roots absorbed significantly more P in P-replete than P-deficient patches. Whole plant biomass production was significantly higher in larger patches with high patch strength than small patches and homogeneous P distribution. CONCLUSION: The result demonstrates that root morphological and physiological plasticity are important adaptive strategies for foraging patchily distributed P and the former is largely determined by patch strength and size. The results also establish that foraging patchily distributed P resulted in increased total plant biomass production compared to homogeneous P distribution.


Assuntos
Adaptação Fisiológica/fisiologia , Biomassa , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Poaceae/metabolismo , Solo/química , Algoritmos , Análise Multivariada , Nutrientes/análise , Raízes de Plantas/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Fatores de Tempo
8.
Environ Sci Technol ; 53(11): 6580-6586, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31074976

RESUMO

Plants used for phytoremediation of contaminated soil are often enriched in certain metals present in the soil. However, the role of the inherent metal content of the plants on their recycling by hydrothermal liquefaction (HTL) has not been considered in previous studies. The present study showed that Rhus chinensis plants grown in highly Pb-polluted soil can release inherent metals (such as Pb, K, Ca, Na, and Mg) into the HTL solution, further enhancing the production of formic and acetic acids and decreasing the yield of levulinic acid. Theoretical calculations using HTL reactions of model compounds showed that a low Pb content could enhance production of levulinic and formic acids via catalysis of the rehydration reaction for 5-(hydroxymethyl)furfural, while a high Pb content promoted the decomposition of levulinic acid to acetic acid. Fourier transform ion cyclotron resonance mass spectrometry analysis confirmed that Pb2+ preferentially promoted the depolymerization of macromolecular compounds with the lignin structure. In general, the inherent metals occurring in the phytoremediation plant influenced the production of organic acids during HTL recycling. Undoubtedly, the combination of phytoextraction and HTL reaction can present a practical pathway toward a sustainable soil remediation technology.


Assuntos
Poluentes do Solo , Biodegradação Ambiental , Metais , Plantas , Solo
9.
Sci Rep ; 8(1): 6417, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29686313

RESUMO

Slow plant growth, low biomass, and low bioavailability of heavy metals in soil are important factors that limit remediation efficiencies. This study adopted a pot cultivation method to evaluate the phytoremediation efficiency of Neyraudia reynaudiana, planted in contaminated soil from a lead-zinc mining area. The soil was inoculated with earthworms (Eisenia fetida), and mixed with the chelating agent ethylenediaminetetraacetic acid (EDTA) one month after planting. The addition of earthworms significantly increased the aboveground biomass of N. reynaudiana and activated heavy metals in the soil, thus facilitating heavy metal uptake by N. reynaudiana. The addition of EDTA significantly increased the incorporation and transport of heavy metals, reduced the uptake of heavy metals by the plant cell wall, and increased the proportions of cellular soluble constituents. Especially with regard to lead, inoculation with earthworms and EDTA application significantly promoted the accumulation efficiency of N. reynaudiana, increasing it 7.1-16.9-fold compared to the control treatment without earthworms and EDTA, and 1.5-2.3-fold compared to a treatment that only used EDTA.


Assuntos
Biodegradação Ambiental , Cádmio/isolamento & purificação , Ácido Edético/metabolismo , Chumbo/isolamento & purificação , Mineração , Oligoquetos/metabolismo , Poaceae/metabolismo , Poluentes do Solo/isolamento & purificação , Zinco/isolamento & purificação , Animais , Biomassa , Cádmio/metabolismo , Chumbo/metabolismo , Poluentes do Solo/metabolismo , Frações Subcelulares/metabolismo , Zinco/metabolismo
10.
Ecotoxicol Environ Saf ; 142: 59-68, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28388478

RESUMO

A greenhouse experiment was conducted to assay the bioaccumulation and tolerance characteristics of Rhus chinensis Mill. to lead (Pb). The effects of exposing R. chinensis Mill seedlings to increasing Pb concentrations (0, 250, 500, 100mgkg-1) in the soil were assessed by measuring Pb accumulation, subcellular distribution, ultrastructure, photosynthetic characteristics, antioxidative enzyme activity, malondialdehyde content, and phytochelatin content. The majority of Pb taken up by R. chinensis Mill was associated with the cell wall fraction in the roots, where the absorption of Ca increased to maintain cell wall stability, and Pb deposits were found in the intercellular space or in the cell wall structures. In leaves, Pb was primarily stored in the cell wall, while it was compartmentalized into the vacuolar structures in the stem. Pb concentrations adversely affected the morphology of Rhus chinensis Mill cellular substructures. Furthermore, increased Peroxidase (POD) and catalase (CAT) activity was observed in plants grown in Pb-amended soil, and this may have led to reduced ROS to maintain the function of the membrane. Changes in phytochelatin levels (PCs) that were observed in Pb treated plants suggest that PCs formed complexes with Pb in the cytoplasm to reduce Pb2+ toxicity in the metabolically active cellular compartment. This mechanism may allow for the plant to accumulate higher concentrations of toxic Pb and survive for a longer period of time. Our study provides a better understanding of how Rhus chinensis Mill detoxifies Pb.


Assuntos
Chumbo/toxicidade , Rhus/efeitos dos fármacos , Plântula/efeitos dos fármacos , Poluentes do Solo/toxicidade , Solo/química , Biodegradação Ambiental , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , China , Inativação Metabólica , Chumbo/metabolismo , Malondialdeído/metabolismo , Fotossíntese/efeitos dos fármacos , Fitoquelatinas/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Caules de Planta/efeitos dos fármacos , Caules de Planta/metabolismo , Rhus/metabolismo , Plântula/metabolismo , Poluentes do Solo/metabolismo
11.
Environ Sci Pollut Res Int ; 24(9): 8805-8813, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28214934

RESUMO

In the present study, the effects of low-molecular-weight organic acids (OAs) on the toxicity of copper (Cu) to the earthworm Eisenia fetida (E. fetida) were investigated in a simulated soil solution. We exposed E. fetida to soil solution containing Cu and a variety of OAs (acetic acid, oxalic acid, citric acid, and EDTA). We found that the addition of OAs reduced the toxicity of Cu to E. fetida, where the reduction was strongest in EDTA and weakest in acetic acid. These compounds decreased the mortality rate of E. fetida that were exposed to Cu and reduced levels of antioxidant enzymes and malondialdehyde to unexposed control levels. E. fetida were exposed to Cu with OAs had reduced Cu2+, which were likely caused by Cu forming complexes with the OAs, reducing the availability of Cu. The presence of OAs also reduced Cu-induced damage on earthworm cellular ultrastructures and changed the subcellular distribution of Cu. These results demonstrated that OAs could reduce the toxicity, as well as the bioavailability, of heavy metals in soil solutions where both OAs and heavy metals often coexist.


Assuntos
Ácidos Acíclicos/farmacologia , Cobre/toxicidade , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Solo/química , Ácidos Acíclicos/química , Animais , Disponibilidade Biológica , Cobre/metabolismo , Peso Molecular , Oligoquetos/ultraestrutura , Poluentes do Solo/metabolismo , Soluções
12.
Environ Sci Pollut Res Int ; 23(21): 21794-21804, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27523041

RESUMO

The effects of increasing concentrations of lead (Pb) on Pb accumulation, subcellular distribution, ultrastructure, photosynthetic characteristics, antioxidative enzyme activity, malondialdehyde content, and phytochelatin contents were investigated in Neyraudia reynaudiana seedlings after a 21-day exposure. A Pb analysis at the subcellular level showed that the majority of Pb in the roots was associated with the cell wall fraction, followed by the soluble fraction. In contrast, the majority of the Pb in the leaves was located in the soluble fraction based on transmission electron microscopy and energy dispersive X-ray analyses. Furthermore, high Pb concentrations adversely affected N. reynaudiana cellular structure. The changes in enzyme activity suggested that the antioxidant system plays an important role in eliminating or alleviating Pb toxicity, both in the roots and leaves of N. reynaudiana. Additionally, the phytochelatin contents in the roots and leaves differed significantly between Pb-spiked treatments and control plants. Our results provide strong evidence that cell walls restrict Pb uptake into the protoplasm and establish an important protective barrier. Subsequent vacuolar compartmentalization in leaves could isolate Pb from other substances in the cell and minimize Pb toxicity in other organelles over time. These results also demonstrated that the levels of antioxidant enzymes and phytochelatin in leaves and roots are correlated with Pb toxicity. These detoxification mechanisms promote Pb tolerance in N. reynaudiana.


Assuntos
Antioxidantes/metabolismo , Chumbo/metabolismo , Poaceae/efeitos dos fármacos , Poaceae/metabolismo , Parede Celular/metabolismo , Inativação Metabólica , Chumbo/toxicidade , Malondialdeído/metabolismo , Fotossíntese/efeitos dos fármacos , Fitoquelatinas/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade
13.
J Plant Res ; 129(2): 251-62, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26733305

RESUMO

We used hydroponic experiments to examine the effects of different concentrations of lead (Pb) on the performance of the Pb-tolerable plant Conyza canadensis. In these experiments, most of the Pb was accumulated in the roots; there was very little Pb accumulated in stems and leaves. C. canadensis is able to take up significant amounts of Pb whilst greatly restricting its transportation to specific parts of the aboveground biomass. High Pb concentrations inhibited plant growth, increased membrane permeability, elevated antioxidant enzyme activity in roots, and caused a significant increase in root H2O2 and malondialdehyde content. Analysis of Pb content at the subcellular level showed that most Pb was associated with the cell wall fraction, followed by the nucleus-rich fraction, and with a minority present in the mitochondrial and soluble fractions. Furthermore, transmission electron microscopy and energy dispersive X-ray analysis of root cells revealed that the cell wall and intercellular space in C. canadensis roots are the main locations of Pb accumulation. Additionally, high Pb concentrations adversely affected the cellular structure of C. canadensis roots. The increased enzyme activity suggests that the antioxidant system may play an important role in eliminating or alleviating Pb toxicity in C. canadensis roots. However, the levels of non-protein sulfhydryl compounds, glutathione, and phytochelatin did not significantly change in either the roots or leaves under Pb-contaminated treatments. Our results provide strong evidence that cell walls restrict Pb uptake into the root and act as an important barrier protecting root cells, while demonstrating that antioxidant enzyme levels are correlated with Pb exposure. These findings demonstrate the roles played by these detoxification mechanisms in supporting Pb tolerance in C. canadensis.


Assuntos
Antioxidantes/metabolismo , Conyza/fisiologia , Chumbo , Biomassa , Parede Celular/metabolismo , Conyza/efeitos dos fármacos , Conyza/ultraestrutura , Peróxido de Hidrogênio/metabolismo , Hidroponia , Chumbo/metabolismo , Chumbo/toxicidade , Malondialdeído/metabolismo , Especificidade de Órgãos , Estresse Oxidativo , Fitoquelatinas/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Folhas de Planta/ultraestrutura , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Raízes de Plantas/ultraestrutura , Caules de Planta/efeitos dos fármacos , Caules de Planta/fisiologia , Caules de Planta/ultraestrutura
14.
Int J Phytoremediation ; 17(1-6): 280-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25397987

RESUMO

Experiments were conducted to examine the effects of different concentrations of Cd on the performance of the Cd accumulator Conyza canadensis. Cd accumulation in roots and leaves (roots>leaves) increased with increasing Cd concentration in soil. High Cd concentration inhibited plant growth, increased the membrane permeability of leaves, and caused a significant decline in plant height and chlorophyll [chlorophyll (Chl) a, Chl b, and total Chl] content. Leaf ultrastructural analysis of spongy mesophyllic cells revealed that excessive Cd concentrations cause adverse effects on the chloroplast and mitochondrion ultrastructures of C. canadensis. However, the activities of antioxidant enzymes, such as superoxide dismutase, catalase, peroxidase, total non-protein SH compounds, glutathione, and phytochelatin (PC) concentrations, showed an overall increase. Specifically, the increase in enzyme activities demonstrated that the antioxidant system may play an important role in eliminating or alleviating the toxicity of Cd in C. canadensis. Furthermore, results demonstrate that PC synthesis in plant cells is related to Cd concentration and that PC production levels in plants are related to the toxic effects caused by soil Cd level. These findings demonstrate the roles played by these compounds in supporting Cd tolerance in C. canadensis.


Assuntos
Cádmio/metabolismo , Conyza/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Catalase/metabolismo , Clorofila/metabolismo , Conyza/enzimologia , Malondialdeído/metabolismo , Peroxidases/metabolismo , Fitoquelatinas/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Superóxido Dismutase/metabolismo
15.
Environ Toxicol Chem ; 33(10): 2351-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25043609

RESUMO

The acute and subacute toxicities of cadmium (Cd) to earthworm Eisenia fetida in the presence and absence of glyphosate were studied. Although Cd is highly toxic to E. fetida, the presence of glyphosate markedly reduced the acute toxicity of Cd to earthworm; both the mortality rate of the earthworms and the accumulation of Cd decreased with the increase of the glyphosate/Cd molar ratio. The subcellular distribution of Cd in E. fetida tissues showed that internal Cd was dominant in the intact cells fraction and the heat-stable proteins fraction. The presence of glyphosate reduced the concentration of Cd in all fractions, especially the intact cells. During a longer period of exposure, the weight loss of earthworm and the total Cd absorption was alleviated by glyphosate. Thus, the herbicide glyphosate can reduce the toxicity and bioavailability of Cd in the soil ecosystems at both short- and long-term exposures.


Assuntos
Cádmio/toxicidade , Glicina/análogos & derivados , Herbicidas/metabolismo , Oligoquetos/efeitos dos fármacos , Oligoquetos/fisiologia , Poluentes do Solo/toxicidade , Animais , Disponibilidade Biológica , Cádmio/análise , Cádmio/metabolismo , Glicina/análise , Glicina/metabolismo , Herbicidas/análise , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/metabolismo
16.
Environ Pollut ; 180: 71-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23733011

RESUMO

Glyphosate (GPS) and copper (Cu) are common pollutants in soils, and commonly co-exist. Due to the chemical structure of GPS, it can form complexes of heavy metals and interface their bioavailability in soil environment. In order to explore the interactions between GPS and Cu, subacute toxicity tests of Cu and GPS on soil invertebrate earthworms (Eisenia fetida) were conducted. The relative weight loss and whole-worm metal burdens increased significantly with the increasing exposure concentration of Cu, while the toxicity of GPS was insignificant. The joint toxicity data showed that the relative weight loss and the uptake of Cu, as well as the superoxide dismutase, catalase and malondialdehyde activities, were significantly alleviated in the present of GPS, which indicated that GPS could reduce the toxicity and bioavailability of Cu in the soil because of its strong chelating effects.


Assuntos
Cobre/toxicidade , Glicina/análogos & derivados , Poluentes do Solo/toxicidade , Animais , Glicina/toxicidade , Oligoquetos
17.
Ecotoxicology ; 21(8): 2297-305, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22975893

RESUMO

Glyphosate (GPS) is a wildly-used pesticide throughout the world. It affects metal behaviors in soil-water system as its functional groups such as amine, carboxylate and phosphonate can react with metal ions to form metal complexes. The reaction will result in the decreasing of heavy metal bioavailability. A laboratory experiment was conducted to investigate the interactions between GPS and copper (Cu) on the acute toxicity of soil invertebrate earthworm (Eisenia fetida), which was exposed to aqueous solutions for 48 h with different mixing concentrations of Cu and GPS (technical-grade Gly acid). The mortality rates, Cu uptake by earthworm, and some biomarkers such as superoxide dismutase (SOD) activity, glutathione (GSH) content, and acetylcholinesterase (AchE) activity were measured. The mortality rates and whole-worm metal burdens increased significantly with the increasing Cu concentration in solution. However, toxicity of GPS to earthworms was not observed in this study. Furthermore, the presence of GPS could significantly reduce the acute toxicity of Cu to earthworms. The mortality rates decreased sharply and the uptake of Cu was nearly halted in the presence of GPS. In addition, the SOD activity, GSH content, and AchE activity almost declined to the levels of the control. These results demonstrate that GPS could control the toxicity as well as the bioavailability of heavy metals in soil solutions where both GPS and heavy metals often coexist.


Assuntos
Cobre/toxicidade , Glicina/análogos & derivados , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Animais , Disponibilidade Biológica , Cobre/farmacocinética , Glicina/farmacocinética , Glicina/toxicidade , Oligoquetos/metabolismo , Poluentes do Solo/farmacocinética , Espectrofotometria , Espectrofotometria Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...